John Spencer¹, Andrew Brooks¹, Tim Pietsch¹, Jon Olley¹, Daniel

Borombovits¹, Graeme Curwen¹, Jeff Shellberg¹

¹Australian Rivers Institute, Griffith University

Normanby Model

- The model developed for this project;
 - Uses the stream segment as the primary unit.
 - Is a static model.
 - With a yearly time step.
 - Covers a 24 year (1986-2009) period of synthetic hydrologic data.
 - Calculates suspended sediment inputs and outputs for all stream segments, starting at each headwater and progressing downstream carrying surplus sediment to the next downstream segment.
 - The stream network contains and the model deals with bifurcations and distributaries, partitioning flow and suspended sediment.

Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; an example from the Normanby catchment

River basin conceptualised as;

- Sub-Catchments
- Stream Segments
- Nodes

Schematic of suspended sediment input and output for a stream segment

Normanby Model

- Require data and parameters;
 - Stream segment network.
 - Annual discharge for each segment.
 - Annual overbank discharge for each segment.
 - Annual in-channel discharge for each segment.
 - Estimates of channel width and depth for each stream segment.

Australian Hydrologic Geospatial Fabric (AHGF)

- Based on the 9 second (~270m) DEM of Australia
- 9621 Sub-Catchments

Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; an example from the Normanby catchment

Sediment Sinks Sources & Drivers in the Normanby Basin

Australian Hydrologic Geospatial Fabric (AHGF)

- 9621 Sub-Catchments
- 9635 Stream Segments

Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; an example from the Normanby catchment

Australian Hydrologic Geospatial Fabric (AHGF)

- 9621 Sub-Catchments
- 9635 Stream Segments
- 8782 Nodes

11

Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; an example from the Normanby catchment Sediment Sinks Sources & Drivers in the Normanby Basin

Methods developed for this model

- Interpolation of synthetic hydrograph data.
- Channel width-depth modelling.
- Distributed stream network.
- Floodplain accretion rates.

12

Queensland DNRM have created a synthetic hydrograph dataset.

- Average daily discharge for a 24 year period (1986 to 2009).
- Normanby catchment consists of 361 nodes (24 years of daily data for 361 nodes is over 3 million rows of data).
- Not based on the AHGF stream network.

Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; an example from the Normanby catchment

- Needed a method to interpolate from 361 to 8782 nodes.
 - Catchment area Discharge relationships produce poor R² for the whole of catchment.

Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; an example from the Normanby catchment Sediment Sinks Sources & Drivers in the Normanby Basin

- Mapped nodes in both datasets to approximately homogenous zones.
- Calculated daily catchment area discharge regression equations (everyday, for each zone, over 100,00 equations).
 - R² were poor, especially for high magnitude flows.

Flows for 1 DNRM node for 3 different years..

Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; an example from the Normanby catchment

Rearrange the data into an ordered set.

Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; an example from the Normanby catchment

17

- Rearrange the data into an ordered set.
- The deciles values roughly approximate a years flow distribution.
- Extracted the sum, max, min, and deciles values for each year for

each node and calculated regression equations for each zone. Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; Sediment Sinks Sources & Drivers

an example from the Normanby catchment

	X		1.4	V 1	1.11		V I		1.4	V 1	4 . 1 . 1	1.11	V I			
	Yearly average daily			rearly sum daily average			rearly minimum daily			Yearly 1st decile daily			rearly 2nd decile daily			
Interpolation Zone	average discharge			discharge			average discharge			average discharge			average discharge			
	Max R ²	Min R ²	Ave R ²	Max R ²	Min R ²	Ave R ²	Max R ²	Min R ²	Ave R ²	Max R ²	Min R ²	Ave R ²	Max R ²	Min R ²	Ave R ²	
Beattie Creek	0.9999	0.8944	0.9845	0.9999	0.8944	0.9845	0.9774	0.8768	0.9530	0.9828	0.8784	0.9591	0.9863	0.9104	0.9676	
Brown Creek	0.9981	0.8095	0.9336	0.9981	0.8095	0.9336	0.9775	0.7127	0.8993	0.9748	0.7731	0.8717	0.9771	0.7676	0.8484	
Deighton	0.9984	0.9554	0.9829	0.9984	0.9554	0.9829	0.9867	0.9524	0.9755	0.9842	0.8731	0.9677	0.9844	0.8966	0.9616	
East Normanby	0.9983	0.9188	0.9777	0.9983	0.9188	0.9777	0.9818	0.3620	0.4825	0.8393	0.3620	0.5473	0.8414	0.4192	0.6088	
Eastern Lower Floodplain	0.9987	0.8533	0.9797	0.9987	0.8533	0.9797	0.9952	0.9046	0.9773	0.9972	0.9371	0.9788	0.9949	0.9269	0.9731	
Jack	0.9969	0.6600	0.9257	0.9969	0.6600	0.9257	0.9737	0.7901	0.9203	0.9853	0.8275	0.9367	0.9889	0.8505	0.9452	
Kennedy	0.9975	0.8652	0.9680	0.9975	0.8652	0.9680	0.9982	0.9243	0.9765	0.9970	0.7688	0.9686	0.9979	0.8116	0.9695	
Laura	0.9991	0.9202	0.9706	0.9991	0.9202	0.9706	0.9897	0.9324	0.9538	0.9984	0.9235	0.9592	0.9987	0.9268	0.9669	
Morenead	0.9972	0.8689	0.9519	0.9972	0.8689	0.9519	0.7664	0.5942	0.6421	0.7790	0.6033	0.6354	0.7802	0.6062	0.6409	
Mosman	0.9965	0.7916	0.9465	0.9965	0.7916	0.9465	0.9555	0.8852	0.9265	0.9518	0.8681	0.9148	0.9487	0.8750	0.9197	
North East	0.9999	0.9396	0.9888	0.9999	0.9396	0.9888	0.7326	0.5406	0.6072	0.7261	0.5676	0.6424	0.7673	0.6105	0.6893	
North West	0.9989	0.9462	0.9827	0.9989	0.9462	0.9827	0.8974	0.8257	0.8374	0.9269	0.8250	0.8440	0.9583	0.8257	0.8542	
West Normanby	0.9988	0.8959	0.9768	0.9988	0.8959	0.9768	0.7190	0.7041	0.7075	0.7234	0.7038	0.7081	0.7478	0.7037	0.7130	
Western Lower Floodplain	0.9986	0.8933	0.9668	0.9986	0.8933	0.9008	0.7491	0.6390	0.6534	0.7710	0.0380	0.0005	0.8410	0.6408	0.6770	
	Yearly 3rd decile daily			rearly 4th decile daily			Yearly 5th decile daily			rearly 6th decile daily			rearly /th decile daily			
Interpolation Zone	ave	rage discn	arge	ave	rage discn	arge	ave	rage disch	arge	ave	rage disch	arge	ave	rage discr	arge	
	Max R ²	Min R ²	Ave R ²	Max R ²	Min R ²	Ave R ²	Max R ²	Min R ²	Ave R ²	Max R ²	Min R ²	Ave R ²	Max R ²	Min R ²	Ave R ²	
Beattie Creek	0.9864	0.9282	0.9719	0.9848	0.9065	0.9682	0.9886	0.9124	0.9584	0.9920	0.9075	0.9585	0.9924	0.9172	0.9608	
Brown Creek	0.9240	0.7407	0.8300	0.9703	0.7325	0.8303	0.9844	0.7493	0.8351	0.9769	0.7477	0.8575	0.9827	0.7804	0.8974	
Deighton	0.9852	0.9054	0.9593	0.9821	0.9011	0.9580	0.9873	0.9038	0.9570	0.9865	0.8494	0.9599	0.9931	0.7463	0.9523	
East Normanby	0.8048	0.4555	0.6415	0.8705	0.4982	0.6892	0.9001	0.5424	0.7532	0.9629	0.6052	0.7907	0.9826	0.6901	0.8570	
Eastern Lower Floodplain	0.9963	0.8453	0.9637	0.9969	0.8862	0.9/16	0.9962	0.8165	0.9559	0.9949	0.7806	0.9541	0.9959	0.7392	0.9185	
Jack	0.9948	0.8694	0.9525	0.9833	0.7967	0.9439	0.9887	0.7539	0.9226	0.9884	0.7669	0.8949	0.9981	0.7418	0.8914	
Kennedy	0.9982	0.8476	0.9708	0.9978	0.8903	0.9757	0.9976	0.9046	0.9780	0.9974	0.9125	0.9819	0.9991	0.8492	0.9793	
Laura	0.9989	0.9436	0.9749	0.9987	0.9485	0.9837	0.9980	0.9634	0.9900	0.9981	0.9707	0.9913	0.9971	0.9117	0.9868	
Morehead	0.7913	0.6013	0.6493	0.8452	0.6010	0.6615	0.8949	0.6051	0.6915	0.9722	0.6127	0.7394	0.9932	0.6546	0.8257	
Mosman	0.9487	0.8748	0.9228	0.9580	0.8450	0.9117	0.9567	0.7627	0.8862	0.9544	0.7116	0.8849	0.9567	0.7296	0.8991	
North East	0.8136	0.6140	0.7139	0.8457	0.6307	0.7429	0.8510	0.5824	0.7472	0.9674	0.5319	0.7114	0.9863	0.5251	0.7172	
North West	0.9659	0.8326	0.8672	0.9966	0.8294	0.8893	0.9893	0.8384	0.9123	0.9998	0.8619	0.9372	0.9988	0.8760	0.9588	
West Normanby	0.7764	0.7041	0.7215	0.8071	0.7036	0.7341	0.8407	0.7071	0.7504	0.8817	0.7133	0.7741	0.8852	0.7146	0.8074	
Western Lower Floodplain	0.8669	0.6491	0.7028	0.9619	0.6526	0.7498	0.9884	0.6767	0.8101	0.9956	0.7399	0.8703	0.9935	0.7864	0.9199	
	Yearly 8th decile daily			Yearly 9th decile daily			Yearly maximum daily								_	
Interpolation Zone	ave	average discharge			average discharge			average discharge			R ² values for 4368 catchment area -					ent area –
	Max R ²	Min R ²	Ave R ²	Max R ²	Min R ²	Ave R ²	Max R ²	Min R ²	Ave R ²		: 					امديما
Beattie Creek	0.9952	0.9309	0.9688	0.9990	0.9163	0.9790	0.9966	0.6225	0.9454	l a	ischa	rge e	quat	ions i	orar	inual;
Brown Creek	0.9909	0.8503	0.9416	0.9932	0.8369	0.9385	0.9802	0.6416	0.8384	•	ave	raσe				
Deighton	0.9918	0.8898	0.9709	0.9963	0.9394	0.9768	0.9930	0.7442	0.9321	-	ave	uge				
East Normanby	0.9937	0.6813	0.9181	0.9992	0.8491	0.9594	0.9842	0.5316	0.9027	•	sum	ו				
Lastern Lower Floodplain	0.9985	0.0373	0.9354	0.9974	0.8222	0.9629	0.9946	0.7701	0.9529	-			_			
Jack	0.9940	0.7105	0.9519	0.9960	0.8207	0.9540	0.9942	0.2040	0.0499	•	min	Imun	n			
Kennedy	0.9980	0.9086	0.9694	0.9969	0.7973	0.9638	0.9733	0.4001	0.8038	•	may	vimur	n			
Laura	0.9956	0.9350	0.9640	0.9932	0.9492	0.9793	0.9941	0.7434	0.9107	-	iiia/	linui				
Maaraa	0.9910	0.8402	0.9370	0.9972	0.9210	0.9733	0.9830	0.5304	0.8049	• 1 to 9 deciles						
North Fost	0.9075	0.7302	0.9224	0.9951	0.6721	0.9398	0.9022	0.5000	0.7320	-	1 10	5 40	Ches			
North West	0.9900	0.3389	0.0478	0.9972	0.0721	0.9423	0.9878	0.5090	0.8860	0	f dail	y diso	charg	e dat	a for	each vear
Wost Normanhy	0.9963	0.0000	0.9720	0.9979	0.9200	0.9792	0.9904	0.0293	0.0009	1.			0			1 - 11
West Normanby	0.9932	0.7412	0.8048	0.9898	0.8349	0.9327	0.9812	0.8200	0.9134	l ir	ו eacl	h zon	e.			
western Lower Floodplain	0.9955	0.8115	0.9441	0.9982	0.8/9/	0.9577	0.9945	0.8037	0.9255	J						

Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; an example from the Normanby catchment

- Then an approximate modelled curve of yearly flow can be generated for each AHGF node.
- The yearly overbank discharge then becomes the area under the curve, but above the level of bankfull discharge.

Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; an example from the Normanby catchment

21

 Lidar DEM data for 3.4 % of the catchment provided the opportunity to model channel width and depth.

Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; an example from the Normanby catchment

Sediment Sinks Sources & Drivers in the Normanby Basin

 Extracted cross section data from the lidar at representative positions (220 cross sections).

- The catchment was divided into zones which approximately represent downstream river patterns.
- Using catchment area as the dependent variable channel width and depth were modelled using polynomial equations.

Zone		R ²	Equation
Central Normanby	Depth	0.73	$y = 7.74E-21x^2 + 3.93E-10x + 1.31E+00$
	Width	0.69	$y = 2.53E-18x^2 + 2.07E-09x + 2.71E+01$
Central West	Depth	0.74	$y = -1.47E - 18x^{2} + 5.00E - 09x + 1.14E + 00$
Cential West	Width	0.65	$y = -2.11E - 16x^2 + 5.39E - 07x$
Coastal	Depth	0.24	$y = -7.47E-30x^{3} + 9.32E-20x^{2} - 2.009E-10x + 1.22E+00$
	Width	0.76	$y = 1.30E-27x^3 - 1.06E-17x^2 + 2.30E-08x + 4.16E+01$
East-West	Depth	0.60	$y = 2.65E-26x^3 - 8.35E-17x^2 + 7.76E-08x$
Normanby	Width	0.74	$y = 3.28E-25x^3 - 9.511E-16x^2 + 8.54E-07x$
Laura	Depth	0.64	$y = 1.37E-25x^3 - 1.97E-16x^2 + 8.70E-08x$
Laula	Width	0.69	$y = 1.28E-24x^3 - 1.83E-15x^2 + 8.45E-07x$
Lower EP	Depth	0.72	$y = 1.73E-28x^3 - 1.95E-18x^2 + 5.25E-09x + 1.46E+00$
Lowertt	Width	0.70	$y = -1.87E-28x^{3} - 2.23E-18x^{2} + 2.25E-08x + 4.03E+01$
Saltwater Plain	Depth	0.83	$y = -3.86E - 28x^3 - 1.16E - 20x^2 + 2.62E - 09x + 8.59E - 01$
Saltwater Flain	Width	0.79	$y = -2.54E - 25x^3 + 7.37E - 16x^2 - 2.90E - 07x + 4.91E + 01$
Sandstone Unner	Depth	0.62	$y = 6.31E-27x^3 - 2.59E-17x^2 + 3.58E-08x$
Sandstone Opper	Width	0.66	$y = 9.74E-26x^3 - 3.33E-16x^2 + 4.73E-07x$
WestUpper	Depth	0.73	$y = -1.55E - 17x^2 + 3.06E - 08x$
west opper	Width	0.75	$y = -2.95E - 16x^2 + 4.99E - 07x$

To some degree the polynomials are capturing the downstream patterns of channel width and depth.

Channel Depth

Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; an example from the Normanby catchment

Sediment Sinks Sources & Drivers

25

Channel Width

Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; an example from the Normanby catchment

Distributaries and Multi - Channels.

Simple representation of stream network.

27

Distributaries and Multi - Channels.

- Simple representation of stream network.
- Included in this model the partitioning of flow and suspended sediment at bifurcations and distributaries.
- This required the development of algorithms to partition and rejoin catchment area at relevant nodes.

Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; an example from the Normanby catchment

ediment Sinks Sources & Drivers in the Normanby Basin

CAPE YORK WATER QUALIT

Floodplain Accretion Rates.

Experimented with forcing the floodplain accretion rates in the model to match OSL derive floodplain accretion rates for the sections of the lower floodplain shown above.

Adapting the SedNet sediment budget framework to incorporate multiple empirical input data sets; an example from the Normanby catchment

Sediment Sinks Sources & Drivers in the Normanby Basin

Sediment Sinks Sources & Drivers in the Normanby Basin CAPE YORK WATER QUALITY

