Geochemistry and provenance of sediments

Jon Olley, Andrew Brooks, John Spencer, Timothy Pietsch, Daniel Borombovits, Christina Howley and Graeme Curwen

Sediment Sinks Sources & Drivers in the Normanby Basin

Key messages

- Sub-soil sources dominate the supply of sediment to the channel networks
- ~10% of the sediment in the bay comes from the upper catchment
- Erosion of the coastal plain is the dominate sources of terrestrial sediments in the bay

Two parts

- Dominant erosion process in the catchment
 - Surface vs subsoil soil erosion

 Geochemistry and provenance of sediments from Princess Charlotte Bay

Two parts

- Dominant erosion process in the catchment
 - Surface vs subsoil soil erosion

 Geochemistry and provenance of sediments from Princess Charlotte Bay

- Previous studies identified surface soil erosion as supplying around 90% of the sediment
 - Brodie, J., McKergow, L.A., Prosser, I.P., Furnas, M., Hughes, A.O., Hunter, H.(2003)
 Sources of sediment and nutrient exports to the Great Barrier Reef World Heritage
 Area. ACTFR Report 03/11. pp. 192
 - Prosser, I.P., Rustomji, P., Young, W.J., Moran, C.J. and Hughes, A.O., 2001.
 Constructing River Basin Sediment Budgets for the National Land and Water
 Resources Audit. CSIRO Land and Water, Technical Report 15/01

 Fallout radionuclides (Cs-137 and Pb-210) to test the hypothesis that surface soil erosion dominates the supply of fine (<10um) sediment in the river systems draining into Princess Charlotte Bay

Sample collection: surface runoff and sediment traps N = 65

Sample collection: gullies and channels

Sample collection: suspended sediments and drape 21 locations 2 wet seasons

Hydrological Processes, 14(14), 2589-2602.

Sample preparation for gamma spectrometry

Probability distribution modelling

$$A_{Cs}x + B_{Cs}y + C_{Cs}z = D_{Cs},$$

 $A_{Pb}x + B_{Pb}y + C_{Pb}z = D_{Pb},$
 $x + y + z = 1$

$$MMD = \left| \frac{D_{Cs} - M_{Cs}}{M_{Cs}} \right| + \left| \frac{D_{Pb} - M_{Pb}}{M_{Pb}} \right|$$

- Most (>83%) of the fine (<10µm) sediment being transported along the main stem of the rivers draining into Princess Charlotte Bay originates from subsoil erosion.
- Reject the hypothesis that surface soil erosion dominates the supply of fine (<10um) sediment in the river systems draining into Princess Charlotte Bay

Dominant erosion process in tropical Australia

Tropical Australian studies that have used radionuclide tracers to estimate relative surface soil contributions to the lower catchment

Catchment	Mean Surface Soil Contribution	Tracer	Reference
	%		
Daly	11	¹³⁷ Cs	Wasson et al., (2010)
Ord	10	¹³⁷ Cs	Wasson et al., (2002)
Upper Fitzroy	20	¹³⁷ Cs and ²¹⁰ Pb _{ex}	Hughes et al., (2009)
Herbert	50	¹³⁷ Cs	Bartley et al., (2004)*
Herbert	20	²³⁹ Pu	Tims et al., (2010)*
Bowen	17	¹³⁷ Cs, ²¹⁰ Pb _{ex,} C	Wilkinson et al., (2012)
Mitchell	3	¹³⁷ Cs	Caitcheon et al., (2012)
Daly	1	¹³⁷ Cs	Caitcheon et al., (2012)
Cloncurry	0	¹³⁷ Cs	Caitcheon et al., (2012)
PCB rivers	16 ± 2	¹³⁷ Cs and ²¹⁰ Pb _{ex}	This study

Geochemistry and provenance of sediments from Princess Charlotte Bay

The Rivers

Annie Bizant North Kennedy Hann Morehead Normanby Saltwater Stewart

SSSD Normanby

17

Coastal Plain

Marine Carbonate

Quartz

The Rivers

Annie
Bizant
North Kennedy
Hann
Morehead
Normanby
Saltwater
Stewart

SSSD Normanby

Cores collected from 46 sites across the bay

All samples were sieved to remove any coarse fragments (>500 um)

- shell and coral fragments
- composited to characterise the marine carbonate component

Queensland Government Department of Science, Information Technology, Innovation and the Arts (DSITIA) Chemistry Centre,

Coupled Plasma-Mass Spectrometry (ICP-MS) for the major element

Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) for the trace elements

Table1: Correlation coefficients for elements measured on surficial sediment samples collected from PCB and its estuaries.

estuaries.			
Element	SiO ₂	Al_2O_3	CaO
SiO ₂	1.00	-0.21	-0.84
TiO ₂	-0.09	0.94	-0.44
Al ₂ O ₃	-0.21	1.00	-0.34
Fe ₂ O ₃	-0.23	0.98	-0.32
MgO	-0.86	0.38	0.59
Na ₂ O	-0.49	0.57	0.12
CaO	-0.84	-0.34	1.00
K ₂ O	0.05	0.90	-0.55
P_2O_5	-0.85	0.50	0.54
Zn	-0.04	0.80	-0.37
As	0.00	0.49	-0.24
Ва	0.13	0.42	-0.33
Ce	0.07	0.44	-0.28
Co	-0.08	0.78	-0.33
Cr	-0.24	0.82	-0.22
Dy	0.01	0.85	-0.47
Er	0.01	0.79	-0.45
Eu	-0.04	0.80	-0.38
Gd	-0.05	0.76	-0.35
Но	-0.01	0.84	-0.45
La	0.00	0.59	-0.28
Lu	0.08	0.64	-0.44
Mn	0.01	0.59	-0.34
Nd	0.00	0.64	-0.31
Pr	0.01	0.63	-0.31
Sm	0.01	0.73	-0.38
Sr	-0.78	-0.36	0.95
Tb	-0.04	0.82	-0.40
Th	-0.07	0.86	-0.41
Tm	0.03	0.75	-0.45
U	-0.45	0.44	0.21
V	-0.22	0.96	-0.33

-0.04

0.04

0.80

0.74

-0.45

SSSD Normanby

Yb

Modelling the geochemistry

- Principle component analysis
 - identify the key geochemical components present in the sediments.
- The Kruskal–Wallis H-test (source samples)
 - identify the geochemical properties which distinguish between the source end members (each of the nine rivers, quartz silt/sands and marine carbonates).
- Linear discriminant analysis (source samples)
 - to identify the optimum combination of properties which distinguished between the sources.
 - The percentage of the sources correctly classified by each individual geochemical property was assessed.
 - Parameters were added such that with each addition the number of sources correctly classified was maximised.

The model

$$MMD = \sum_{i=1}^{n} \left| \left(C_i - \left(\sum_{s=1}^{m} P_s S_{si} \right) \right) / C_i \right|$$

Test of the fit

$$GOF = 1 - \left(\frac{1}{n} * MMD\right)$$

1 is a perfect fit

Average for 64 bay and estuarine samples 0.93 ± 0.02

marine carbonate and the clay associated elements

Suite of elements providing the best discrimination between sources

	Kruskal–W	Kruskal–Wallis H-test		Percent (%) correctly classified	
	H-value	<i>P</i> -Value	Individual	Cumulative	
V	31.9	<0.001	55.3	55.3	
TiO ₂	33.2	0.001	53.2	70.2	
<u>-</u>					
CaO	24.2	0.002	40.4	76.6	
K ₂ O	25.7	< 0.001	51.1	91.5	
Yb	24.0	0.002	44.7	93.6	
U	29.1	< 0.001	46.8	97.9	
Th	18.2	0.020	38.3	97.9	
Pr	17.3	0.030	36.2	100	
SiO ₂	22.8	0.004	34.0	100	
La	18.0	0.021	40.4	100	

28 <u>+</u> 3%

Scale 100% 75% 50% 25% 10%

26 <u>+</u> 3%

Scale

75%

50%

25% 10%

The Rivers

~10%

Annie North Kennedy Hann Morehead Normanby Saltwater Stewart

LiDAR data

Conservatively 0.71± 0.08 m of erosion

175Mt to 220Mt has been eroded from this area.

Optical dating

In the last 500 to 1000 years

SSSD Normanby