An Empirically-based sediment budget for the Normanby Basin: Key Findings & Implications

Australian Rivers Institute, Griffith University

Andrew Brooks, John Spencer, Jon Olley, Tim Pietsch, Daniel Borombovitz, Graeme Curwen, Leila Eslami-Endargoli, Anne Bourgeault, Jeff Shellberg, Christina Howley

Normanby Catchment (1 of 10 Reef Plan priority catchments)

Land-use

- Grazing 71%
- Conservation (Nat Parks) – 27%
- Intensive agriculture (Lakeland basalt country) 0.2%
- Alluvial gold & tin mining (minor)

Normanby Sediment Budget Summary (Brodie et.al. 2003)

	SS Inputs Kt/yr	BL Inputs Kt/yr					
colluvial gully	173	173					
Bank	17.5	17.5					
Total Hillslope	15,670						
Hillslope delivered	1,567	0					
tot inputs	1,758	190.5					
storage	664	115					
Export	1,094	76					
SS storage & Export as % of I/P							
to stream network							
37.8% Storage 62.2% Export							
Budget							

Suspended Sed sources

Sediment Sinks Sources & Drivers in the Normanby Basin

What did we actually know about sediment loads in this catchment in 2009?

- Very few empirical data..
 - Some TSS data from Kalpowar gauge DERM
 - Several years nutrient load data & TSS Furnas AIMS (Kalpowar)
 - Baseline WQM data (turbidity data) CYMAG/Howley (2006 2010)
 - Some Imagery

Budget

Background to this study

Two views of the Normanby

- Based on the SedNet modelling that it is a major sediment source to the reef - and yet another fairly heavily impacted tropical catchment (5 x increase in Post-European supply)
- 2) That it represents a reference catchment, which to date appears to have had relatively little impact on the adjacent reefs

Key question – Which of these views is correct? Are they both right? Something in between?

Focus for our study

- Re-parameterisation a new model from the ground up -
 - Measure hillslope erosion rates
 - Map location and extent of gullies in catchment
 - Measure gully & bank erosion rates (repeat LiDAR & A/P analysis)
 - Sediment tracing (radionuclides & geochem) (sfce/sub-sfce sources + major source locations)
 - In-stream load measurements (RSS network)
 - Geochronology of benches, floodplain, and gully systems (evidence for post-European change) ~ 90 OSL dates

- Sediment tracing source to sink (210Pb, 137 Cs, REE)
- Repeat LiDAR (2009/11) ~3% of catchment; 0.5 % repeat
- OSL dating (Gullies, Benches, FPs) - 90 dates
- Sediment load sampling (RSSs @ gauge stations)
- Hillslope Erosion Measurement (HSTs)

Does Hillslope erosion dominate?: Model predicts high rates on high slopes

Previous modelling predicted these areas to be the dominant sediment sources

Many slopes are bare rock with v little soil – supply limited.

measured hillslope sediment production rates (2009-10; 10-11 Wet season)

11 traps located on 4 main geologies – in high sediment production zone. 2 wet seasons – within LiDAR blocks

Measured all RUSLE parameters at plot scale except K

Comparison between RUSLE Modelled and Measured Mean Annual Total Hillslope Erosion - Normanby Catchment

Hillslope Erosion at Catchment Scale...modelled vs measured

• **Total** Hillslope suspended sediment production across the Normanby basin = approx 33,590 t/yr

(*cf* 15,760,000 by previous SedNet Modelling = 470 x measured)

(Tracing data (below) suggests ~ 220 Kt/yr)

Why is RUSLE over-predicting HS Erosion?

- 1. Fundamental problems with understanding of K (erodibility) factors for these soils (confounded with C (cover) factor)
- 2. Late Dry C Factor underestimates true average cover across the wet season
- 3. Data interpolation issues (e.g. R factor erosovity)

Derived C Factor across 2009-10 & 2010-11 Wet Season for selected Hillslope Sediment Trap sites

Hillslope vs channel erosion

 widely used to determine the relative contribution of hillslope and gully/channel erosion to stream sediments

Net Annual Suspended Sediment Output

100

50

25

Ν

ER QUALITY

Other tracing studies in northern Australia

Table 2: Tropical Australian studies that have used radionuclide tracers to estimate relative surface soil contributions to the lower catchment (after Caitcheon et al., 2012)

Catchment	Mean Surface Soil Contribution %	Tracer	Reference		
Daly	11	¹³⁷ Cs	Wasson et al., (2010)		
Ord	10	¹³⁷ Cs	Wasson et al., (2002)		
Upper Fitzroy	20	¹³⁷ Cs and ²¹⁰ Pb _{ex}	Hughes et al., (2009)		
Herbert	50	¹³⁷ Cs	Bartley et al., (2004)*		
Herbert	20	²³⁹ Pu	Tims et al., (2010)*		
Burdekin	17	¹³⁷ Cs, ²¹⁰ Pb _{ex, C}	Wilkinson et al., (2012)		
Mitchell	3	¹³⁷ Cs	Caitcheon et al., (2012)		
Daly	1	¹³⁷ Cs	Caitcheon et al., (2012)		
Cloncurry	0	¹³⁷ Cs	Caitcheon et al., (2012)		
Laura-Normanby	13±3	¹³⁷ Cs and ²¹⁰ Pb _{ex}	This study		
Stewart	11 ± 1	¹³⁷ Cs and ²¹⁰ Pb _{ex}	This study		

Norr

Bud *Note these two studies were carried out pre and post cyclone Larry

So where is the sediment really coming from?

LiDAR change data + spatial interpolation forms primary input to new sediment budget model...

Normanby Suspended Sediment Inputs

Sediment Sinks Sources & Drivers in the Normanby Basin

20km² stream initiation threshold excludes small streams from 31% of catchment (attributed to hillslope erosion).

e.g. Of Channel erosion from minor trib

No relationship with National Gully dataset

Total long term annual av Gully erosion rate 1.14 Mt/year

Sediment Sinks Sources & Drivers in the Normanby Basin

Bank erosion (main channels)

N

UALITY

3 1 Net Annual Suspended Sedment

Ν

ER QUALITY

100

50

25

Sediment Storage – benches & floodplains

Inputs	Annual Load (t/yr)	1 stdev
Hillslope	15,901	na
Alluvial Gully	736,409	na
Colluvial Gully	411,844	na
2ndry Channel	1,672,108	na
Main ch Bank Erosion	249,879	204,861
total inputs	3,086,140	204,861
Storage		
in-channel benches	424,094	404
floodplain deposition	1,270,417	17,203
total storage	1,694,511	17,607

1,391,629

222,468

Bet Quitputy Sediment

Budget

Mean annual sediment contribution to PCB

So how much sediment is 1.4Mt?

One of these holds ~ 10t

139 000 of them parked end to end would be a line of trucks from Cooktown to Mackay

Sediment Sinks Sources & Drivers in the Normanby Basin

• But wait – there's more...

So what do the PCB sediments tell us about sources?

Normanby Sediment Budget

ent Sinks Sources & Drivers in the Normanby Basin

PCB bottom sediment source REE geochemistry

Upper Catchment Sediment sources not well represented.

Appears lower floodplain & coastal plain are key sources

3 Normanby Sediment9 Budget

Coastal plain stripping

Conservative estimate ~ 220Mt from ~ 185 km² area

Sediment Sinks Sources & Drivers in the Normanby Basin

Normanby Sediment Budget

PCB Deposition rates by source (our data) based on Torgersen et al., (1983) accretion rates

	Annia	Pizont	North Kenne	Honn	Moorehe	Norman	Saltwat	Stewar	Coastal	Sand	Marin
	Annie	DIZdiil	uy	⊓d∩∩	au	by	er	ι	piain	Sanu	e
Mean	0.012	0.239	0.002	0.012	0.009	0.039	0.002	0.011	0.138	0.260	0.276
Std Deviation	0.019	0.141	0.007	0.069	0.031	0.062	0.009	0.022	0.150	0.222	0.171
Std error	0.003	0.021	0.001	0.010	0.005	0.009	0.001	0.003	0.022	0.033	0.026
Deposition rates	Ktonnes	s per year	derived	from eac	h source						
6.1 mm/yr	189	3839	27	195	143	633	27	185	2207	4172	4432
2.3 mm/yr	71	1448	10	74	54	239	10	70	832	1573	1671
										,	

Delta & coastal plain sources = 2.3 – 6 Mt/yr -

Torgersen, T., Chivas, A.R., Chapman, A., (1983). Chemical and Isotopic characterisation and sedimentation rates in Princess Charlotte Bay Queensland. BMR Journal of Australian Geology and Geophysics 8, 191-200.

Tidally driven sediment plumes entering PCB

Summary (upper catchment sources) i.e. Excl. Coastal plain

	GU 2012 SS I/Ps (t)	%	Brodie et al 2003	%
colluvial gully	411800	13%	173000	10%
alluvial gully	736400	24%	0	0%
hillslope delivered Mainstem bank	15900	1%	1576000	89%
erosion	249900	8%	17500	1%
2ndry alluvial				
channel erosion	1672000	54%	0	0
total	3086000	100%	1766500	100%
storage	1697300	55%	664000	37%
Net (=18% of PCB				
accretion)	1,390,000		1,102,000	

Sediment Sinks Sources & Drivers in the Normanby Basin CAPE YORK WATER

Conclusions

- 1. Hillslope erosion not the dominant source
- 2. Gully erosion, and bank erosion dominate
- 3. Still considerable uncertainty and unmeasured residuals...
- 4. Can't find evidence for 5 fold post-European increase in sed yield from Catchment (pre-European rates probably under-predicted)
- But land use clearly has elevated sed supply (1.4Mt/yr still 3rd highest catchment contribution to GBR – without coastal erosion source)
- 6. Storage within the system has absorbed a large amount of the additional yield
- 7. We would regard the empirical data underpinning this study to be the bare minimum!

Conclusions Cont.

Management conclusions to follow at 12:10.

"Modelling is an important accompaniment to measurement, but is no substitute for it; science requires observation, and without that we will cease to progress in understanding our environment, and therefore in managing it appropriately" Silbertstein, 2006

Sediment Sinks Sources & Drivers in the Normanby Basin

• Acknowledgements:

This project is funded through the Federal Govt Reef Rescue Program in partnership with Cape York Sustainable Futures (CYSF) & Cape York Marine Advisory Group (CYMAG)

Thanks to Isha Segboer & Trish Butler (CYSF), Ian & Malcolm McCollum (CYMAG), Ron Harrigan (Normanby Station), Darryl Paradise (Kings Plains Station), Damian & Bridget Curr (Springvale Station); Jason Carroll (Sthrn CY Catchments), Amanda Hogbin (OLKLA Corp), The Laura Rangers, Ted & Sue Lee, Bungie Scott, & many others....

Sediment Sinks Sources & Drivers in the Normanby Basin

Sediment Sinks Sources & Drivers Sediment Sinks Sources & Drivers in the Normanby Basin CAPE YORK WATER QUALITY

Sediment Sinks Sources & Drivers Sediment Sinks Sources & Drivers in the Normanby Basin CAPE YORK WATER QUALITY

E.g. KPHST1 – modelled rates ~75t/ha/yr

6 Tonne pile of dirt

1 kg pile of dirt

Measured annual yield= 0.1

-

RUSLE predictions for this trap per year = 30 tonnes

How do we explain this discrepancy?

Was our sampling period not representative?

Key Landuse Drivers

Historical A/P analysis of gully erosion

Gullies found to be both pre- and post-European – backed up by geochronology

These data provide longer term rate data

Roads as sediment sources

Sediment Sinks Sources & Drivers in the Normanby Basin

Road Runoff - Unsealed Road Runoff – Normanby Catchment (Angela Gleeson Hons Thesis, 2012)

- Surface area of roads = 56.76km² and intersects 1190 times with the surrounding • stream network (40.4 km² unsealed);
- The network is 34.91km² greater than total area of intensive agriculture (21.85km²) (ABS, 2005-2006);

Budget

•EMCs from road runoff ~ 2nd only to Mining from Bartley et al's data
•3-4 orders of magnitude > Hillslope erosion EMCs

• Roads should be considered as a major landuse

Based on rainfall data over 2009 – 2011 – annual runoff from roads ~ 7500t (25% of all hillslope runoff)

42% of the experimental V-Drains were found to have associated gullies (Gleeson, 2012) -

a sample from ~10km of road - indicated ~ 2,260 tonnes of additional erosion from V drain induced gullies (timescale unknown) (i.e. this adds to total road sed load)

